Role of ATP-sensitive potassium channels in prostaglandin-mediated gastroprotection in the rat.

نویسندگان

  • Brigitta M Peskar
  • Karlheinz Ehrlich
  • Bernhard A Peskar
چکیده

This study compares the involvement of ATP-sensitive potassium (K(ATP)) channels and prostaglandins in various forms of gastroprotection in the rat. Instillation of 1 ml of 70% ethanol induced severe gastric mucosal damage (lesion index 39 +/- 0.8), which was substantially but not maximally reduced by oral pretreatment with 16,16-dimethyl-prostaglandin (PG) E(2) (75 ng/kg), 20% ethanol (1 ml), sodium salicylate (15 mg/kg), the metal salt lithium chloride (7 mg/kg), the sulfhydryl-blocking agent diethylmaleate (5 mg/kg), and the thiol dimercaprol (10 mg/kg). Administration of indomethacin (20 mg/kg) increased gastric mucosal damage induced by 70% ethanol (lesion index 45 +/- 0.8) and significantly reduced the protective effect of 20% ethanol, sodium salicylate, lithium chloride, diethylmaleate, and dimercaprol. The blocker of K(ATP) channels glibenclamide (5-10 mg/kg) significantly antagonized the protective effect of 16,16-dimethyl-PGE(2), 20% ethanol, sodium salicylate, lithium chloride, diethylmaleate, and dimercaprol. The inhibition of protection induced by glibenclamide was reversed by pretreatment with the K(ATP) channel activator cromakalim (0.3-0.5 mg/kg). In conclusion, our results indicate a role of K(ATP) channels in the gastroprotective effect of 16,16-dimethyl-PGE(2) and of the other agents tested. Since the protection afforded by these agents is additionally indomethacin-sensitive, it is suggested that under these conditions endogenous prostaglandins act as activators of K(ATP) channels, and this mechanism, at least in part, mediates gastroprotection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anti-nociceptive effect of cimetidine in mice: the role of ATP-sensitive potassium channels

Recent studies have shown that intracerebroventricular administration of cimetidine (CIM) induces anti-nociceptive and anti–inflammatory effects in rats. However, the underlying mechanism of CIM effect has not been determined yet. This study was planned to determine the anti-nociceptive effect of CIM (50 mg/kg, i.p.) in male mice (25-30 g, n = 80) using tail flick test. Also, the role of ATP-se...

متن کامل

Synthesis and Vasorelaxant Effect of 9-aryl-1,8-acridinediones as Potassium Channel Openers in Isolated Rat Aorta

ATP-sensitive potassium (KATP) channel openers have a relaxation effect due to the lower cellular membrane potential and inhibit calcium influx. There has been considerable interest in exploring KATP channel openers in the treatment of various diseases such as cardiovascular, cerebrovascular, and urinary system disease and premature labor. The purpose of this study was to synthesize 3,3,6,6-tet...

متن کامل

Anti-nociceptive effect of cimetidine in mice: the role of ATP-sensitive potassium channels

Recent studies have shown that intracerebroventricular administration of cimetidine (CIM) induces anti-nociceptive and anti–inflammatory effects in rats. However, the underlying mechanism of CIM effect has not been determined yet. This study was planned to determine the anti-nociceptive effect of CIM (50 mg/kg, i.p.) in male mice (25-30 g, n = 80) using tail flick test. Also, the role of ATP-se...

متن کامل

Synthesis and Vasorelaxant Effect of 9-aryl-1,8-acridinediones as Potassium Channel Openers in Isolated Rat Aorta

ATP-sensitive potassium (KATP) channel openers have a relaxation effect due to the lower cellular membrane potential and inhibit calcium influx. There has been considerable interest in exploring KATP channel openers in the treatment of various diseases such as cardiovascular, cerebrovascular, and urinary system disease and premature labor. The purpose of this study was to synthesize 3,3,6,6-tet...

متن کامل

Activation of Inward Rectifier Potassium Channels in High Salt Impairment of Hydrogen Sulfide-Induced Aortic Relaxation in Rats

Introduction: Hydrogen sulfide (H2S) plays a key role in the regulation of vascular tone and protection of blood vessels against endothelial dysfunction. Since the mechanism of salt impairing H2S-induced vascular relaxation is not fully clear, therefore this study was designed to investigate the role of potassium (K+) channels in the vasodilatory effects of exogenous H2S in rat aortic rings.&nb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 301 3  شماره 

صفحات  -

تاریخ انتشار 2002